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A multiple-quantum magic angle spinning (MQMAS) NMR
experiment of quadrupolar nuclei is demonstrated, which uses two
different multiple quantum coherences in t1 to refocus the quad-
rupolar broadening. This experiment has the potential of achieving
improved resolution over current techniques. C© 2001 Academic Press
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INTRODUCTION

The nuclear quadrupole interaction of spins greater than/2
with a nonshperically symmetric electrical charge distributio
often much stronger than other spin interactions, such as dip
dipole and chemical shift, making it necessary to take into
count the second order term in a perturbation treatment.
spatial part of this term can be expanded into a sum of sphe
harmonics of ranks zero, two, and four, of which only the sec
rank component can be eliminated by rapid magic angle sa
spinning (MAS).

The second and the fourth rank terms can be averaged
correlated by spinning the sample at more than one angle (1–5)
or by MAS in combination with the creation and conversion
multiple quantum coherence (6, 7) (MQMAS). Here, the fact
that the ratio of the fourth rank quadrupolar frequency to
chemical shift is different for multiple and single quantum c
herences allows one to selectively refocus the effects of
interaction. This refocusing is accomplished by concatena
evolution periods with multiple and single quantum coheren
in t1, while observing the evolution of single quantum coh
ence int2 as depicted in Fig. 1a. The resulting two-dimensio
spectra have sharp peaks inω1, separated by a scaled isotrop
chemical shift and isotropic quadrupolar shift, correlated w
anisotropic resonances inω2. In experiments where the sing
quantum coherence does not explicitly evolve duringt1, a shear-
1 Presented in part at the Experimental NMR conference in Asilomar, C
April 9–14, 2000, and at the Rocky Mountains Conference on Analytical Che
istry, Broomfield, CO, July 31–August 4, 2000.
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ing transformation brings about this representation. The tra
formation is tantamount to a shift of the echo time origin
t2 = 0, making both types of experiments formally equivale
(8, 9). It should be pointed out, however, that splitt1 experiments
may in some cases have significant advantages (8).

An alternative approach, which we describe in the pres
Communication, is to use two different multiple quantum c
herences int1 in order to refocus the quadrupolar broadeni
as shown in Fig. 1b. Only a minor modification of the bas
experiment is required. The frequency spread inω1 of an ex-
periment for a spin 5/2, which uses five quantum and trip
quantum coherence int1 (subsequently denoted 5Q3Q) excee
that of the 5Q1Q experiment by a factor of 1.7 and that of
3Q1Q experiment by a factor of 7. For a spin 7/2, the 7Q5Q
experiment shows a frequency spread 2.4 greater than fo
7Q1Q experiment, and 24 times greater than for the 3Q
experiment.

EXPERIMENTAL

The27Al NMR spectra were obtained at a Larmor frequen
of 130.304 MHz using a Chemagnetics/Varian CMX Infini
500 (11.7 T) spectrometer equipped with a 4-mm Chemagne
transmission line MAS probe spinning at 15 kHz. The RF a
plitude used for the hard RF pulses was 200 kHz. A continu
20 kHz decoupling field was applied to the protons. The pu
sequences and desired coherence pathways for the 5Q1Q
5Q3Q experiments are shown in Fig. 1. The phase cycles
the two experiments are listed in Table 1 and were checked
optimized with the CCCP program (10). For the 5Q1Q experi-
ment, the hard RF pulse durations were 7.0 and 1.2µs, and for
the 5Q3Q experiment they were 7.0, 1.98, and 1.24µs. A soft
π pulse (amplitude= 13.3 kHz) was used to selectively inve
the+1 coherence to a−1 coherence for detection of the fu
echo (8, 9). The dwell times were 12.33 and 33.33µs (half a
rotor period) int1 andt2, respectively, andτ = 2 ms. Ninety-six
and 256 data points were collected int1 andt2, respectively. The
recycle delay was 0.5 s. Frequencies were referenced to the
of an AlCl3 solution.
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FIG. 1. (a) Pulse sequence for the 5Q1Q experiment. The first pulse ex
the 5Q coherence. The second pulse converts the 5Q coherence to single
tum coherence. The third pulse is a soft inversion pulse selectively inverting
central transition to acquire a full echo. The coefficientsa andb are calculated to
null the overall effect of the fourth rank component of the quadrupolar frequ
cies (6). Here they area = 12/37,b = 25/37. (b) Pulse sequence for the 5Q3
experiment. An additional conversion pulse is needed in this experiment to t
form the 5Q to 3Q coherence. Here the coefficients area = 19/44,b = 25/44.

The sample of AlPO-41 was dried prior to data acquisitio
The spectra were taken after rotating the sample in a pe
rotor overnight, which induced additional dehydration of t
sample.

TABLE 1
Phase Cycles for the 5Q1Q and 5Q3Q Experiments

Experiment Pulse(s)/receiver Phase list

5Q1Q φ1 (0, 18, 36, 54, 72, 90, 108, 126, 144,
162, 180, 198, 216, 234, 252, 270,
288, 306, 324, 342)8

φ2 [(0)20, (90)20, (180)20, (270)20]2

φ3 (0)80, (180)80

φr (0, 270, 180, 90)40

5Q3Q φ1 (0, 18, 36, 54, 72, 90, 108, 126, 144,
162, 180, 198, 216, 234, 252, 270,
288, 306, 324, 342)32

φ2 [(0)20, (90)20, (180)20, (270)20]8

φ3 (0)80, (45)80, (90)80, (135)80, (180)80,

(225)80, (270)80, (315)80

φ4 (0)640

φr {[(0, 270, 180, 90)5, (180, 90, 0, 270)5]2,

[(90, 0, 270, 180)5, (270, 180, 90, 0)5]2,

[(180, 90, 0, 270)5, (0, 270, 180, 90)5]2,

[(270, 180, 90, 0)5, (90, 0, 270, 180)5]2}2
Note.The labelsφ1,2,3,4,r denote the phases of the pulses in the correspond
pulse sequence or the receiver phase. Subscripts indicate the number of
the phase cycle in the brackets, parentheses, or braces must be repeated.
are 160 steps in the 5Q1Q phase cycle and 640 steps in the 5Q3Q phase c
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RESULTS AND DISCUSSION

Figure 2 shows the 5Q1Q and 5Q3Q spectra obtained fr
the AlPO-41 sample. The peak labeled A is clearly resolv
into three peaks in the 5Q3Q spectrum. The origin of the bro
peak B in the 5Q1Q spectrum, similar to the peak observ
by Wimperis and co-workers for an aluminum methylphosph
nate sample (11), is currently unknown. The broad features ma
result from residual heteronuclear couplings, which could
unobservable in the 5Q3Q experiment due to the greater bro
ening and the lower efficiency. Assuming three sites pres
(A1, A2, A3) the parameters were extracted using the center
gravity peak positions (indicated by lines). The chemical shi
and quadrupolar parameters wereδcs = 32.9, 34.4, 34.6 ppm,
and Q

√
1+ η2/3 = 2.79, 2.31, 3.19 MHz. Caldarelli and co

workers (12) have likewise considered three sites for a calcin
AlPO-41 sample in a 5Q1Q experiment and good qualitat
agreement is found (our signals A1, A2, A3 correspond to
signals labeled 1, 2, 3 in their work). It should be noted that at
field strength used in our work, resolving the three sites becom
very difficult with a 5Q1Q experiment as the frequency spaci
of adjacent peaks inω1 is only on the order of 200 Hz. The spectr
presented in Fig. 2 were truncated int1 (tmax

1 ≈ 1.2 ms), resulting
in convolution broadening (13) in the isotropic dimension on the
order of 400 Hz at half height. Under these conditions, reso
tion of the three resonances does not emerge from our 5Q
experiment.

The authenticity of the resonance peaks in the 5Q3Q exp
iment was tested using an extensive phase cycle, verifying
the resonance positions inω1 shift by the correct amount with
a resonance offset and by repeating the experiment at a di
ent spinning speed. The signal-to-noise ratio normalized by
number of scans in the two experiments was approximate
factor of 6 worse in the 5Q3Q experiment. The total acquisiti
times were 4.3 and 8.6 h for the 5Q1Q and 5Q3Q experime
respectively. The sensitivity of all experiments can be improv
roughly by a factor of two using two fast amplitude modulate
times
There
ycle.

FIG. 2. (a) 5Q1Q spectrum of AlPO-41, (b) 5Q3Q spectrum of AlPO-41.
The three sites A1, A2, and A3 correspond to the sites labeled 1, 2, and 3 in Ref.
(12).
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pulses (14, 15) for the conversion from 5Q to 3Q coherence, a
from 3Q to 1Q coherence.

Recently, Wimperis and co-workers (13) have shown that the
resolution may be increased by using the highest-possible
tiple quantum coherence in MQ1Q experiments, even when
data are not truncated int1. Other authors have observed simil
trends (16). We anticipate that the resolution can be further
creased in an MQNQ experiment when the two highest mult
quantum coherences are combined. The same technique c
principle, be used for any spin larger than one. A detailed an
sis of different line-broadening mechanisms and their scaling
under investigation and will be described in a later publicati
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